久久蜜桃精品avI高跟丝袜avI亚洲欧美偷拍视频I欧美精品偷拍I一级大片在线I国产精品女上位I伊人365影院I91精品国产免费I日本电影成人I特级黄录像视频I狠狠操资源I林由奈在线观看I不卡av影院I涩涩av在线I亚洲国产高清国产精品I亚洲成a人片777777久久I女人18精品一区二区三区Ixxxⅹ少妇少妇xxxxI日本精品二区I欧美精品做受xxx性少妇Iav无码久久久久久不卡网站I欧美在线观看视频一区二区三区I国产sssI爽爽爽在线观看I热99在线I麻豆回家视频区一区二

400-777-8858 搜索
相關欄目:企業動態 | 常見問題

基于隨機森林算法對銅鋁破碎料的識別方法

返回列表

基于有色金屬破碎料的外觀差異,利用機器視覺代替人的視覺進行識別,是一種及時便捷、環保 有效的方法。在分選領域中,機器視覺被廣泛應用于農產品以及電子元件的分選,研究主要集中在來源確定、形狀規則的目標,對于從農業機械設 備、汽車拆解破碎得到的來源復雜、形狀不規則、表面狀態復雜的物料鮮有研究。采用自行設計的銅鋁水箱粉碎機分選裝置,基于機器視覺針對來源復雜、形狀不規則、表面凹凸不平、多坑洼斑點的銅、鋁破碎料進行分選研究,提取顏色和紋理等外觀特征,并運用隨機森林智能算法建立分類 器,為分類特征選擇提供依據。

有效地從高維數據中提取或選擇出有用的特征信息或規律,并將其分類識別已成為當今信息科學與技術所面臨的基本問題。隨機森林RF由Breima博士(2001)提出,是一種流行的機器學習算法。基于模型融合的理念來解決分類和擬合問題,利用自助重采樣法bootstrap和節點隨機分裂技術構建多棵決策樹(多種不同分類器),并統計各個決策樹投票結果得到終分類結果[13]。RF具有分析大型、高維數據的能力,不會出現過擬合,訓練速度快,對于訓練數據中的噪聲和缺失數據具有良好的魯棒性。其自身具有重要性度量能夠對分類特征進行排序,從而進行特征選擇。 訓練過程中,根據決策樹的數量,應用bootstrap 自助重采樣方法有放回地隨機抽取高維數據,創建 n個與訓練集大小一致的樣本集D1、D2,……,Dn用 于訓練決策樹。假設每個樣本數據的維度為M(即 共M個特征),每棵決策樹從隨機選取的m(m≤M) 個特征子集中選擇優特征的進行節點分裂,直到 得到終止結果或不再分裂為止。整個訓練過程中不 進行剪枝。在測試過程中,所有訓練完成的決策樹 對測試集數據進行投票判斷,根據多數投票原則選 出分類結果。其中,CART決策樹通過獨立的測試集 對訓練集生成的決策樹進行剪枝,從而獲得每個決 策樹的特征,也稱為葉子節點。對測試集數據 的所有決策樹葉子節點遍歷求和,比較得到隨機森 林的特征重要性度量。

推薦產品

主站蜘蛛池模板: 马鞍山市| 仁寿县| 荥阳市| 宝清县| 象山县| 田东县| 枣阳市| 云梦县| 广饶县| 锡林郭勒盟| 龙海市| 宕昌县| 灌云县| 武宁县| 柳河县| 博罗县| 邵东县| 巨鹿县| 东莞市| 霍城县| 石楼县| 阳谷县| 南涧| 江山市| 沛县| 蒙阴县| 眉山市| 于都县| 天津市| 林甸县| 青铜峡市| 右玉县| 乌兰县| 腾冲县| 淳安县| 淅川县| 新营市| 囊谦县| 阳曲县| 纳雍县| 桐乡市|